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Abstract

A computer model capable of simulating the time and environmental dependence of pit
initiation, growth, and cessation of growth has been developed. This phenomenological
model is capable of predicting the time required for initiation of pitting and the
development of a “pitting damage function,” i.e. the distribution of pit depths, for
arbitrary environmental histories. The model is based on a stochastic approach of
describing pit initiation and growth but includes some aspects of the deterministic
features of pit growth.

Recent improvements to the model provide the capability to simulate permanent
pit growth cessation and a decreasing time or depth dependence of pit growth rates. The
results of example calculations demonstrate that these additions allow the model to
simulate, in a physically meaningful way, the commonly reported evolution of
asymmetric pit depth distributions and the nonlinear increase in maximum pit depth with
increasing exposure time. An extreme-value statistical analysis also has been
incorporated within the improved computer code, which allows it to predict a logarithmic
increase in maximum pit depth with increasing surface area, as suggested by data and
theory. This addition provides a method for extrapolating experimental pit depth data
gathered using small laboratory samples to the very large container surface areas that
would be exposed in the potential high level nuclear waste repository.

Unfortunately, the lack of experimental data from which to generate code input
parameters for candidate waste package container materials in repository-relevant
environments seriously handicaps the application of this code to performance assessment
activities. Recently, a limited number of experiments have been performed on Alloy 825
in repository-relevant environments. Preliminary data for the pit depth distribution in
potentiostatically-polarized Alloy 825 are presented and demonstrate the viability of
generating data with which to compare model predictions. The need for additional
experimental efforts is discussed.
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1. Introduction

1.1 Modeling pitting of waste package containers

A multiple barrier concept currently is being employed in the development of
waste package (WP) containers for use in the potential geological repository for spent
nuclear fuel and high level nuclear waste at Yucca Mountain, Nevada. Current WP
development considers designs to enclose spent nuclear fuel from commercial power
reactors in one design and reprocessed high-level borosilicate glass waste in another
similar design. In either case, one of the barriers will be constructed of a highly corrosion
resistant material, such as a Ni- or Ti-base alloy. Normally, such alloys are protected by
a passive oxide film, but if they become wet and CI~ or other aggressive species are
present, the passive film can break down locally, causing localized corrosion. Of the
three forms of localized corrosionl, viz. pitting, crevice corrosion, and stress-corrosion
cracking, that are likely to occur on WP surfaces exposed to repository environments,
pitting corrosion was chosen for detailed modeling. Pitting corrosion was selected
because it bears many similarities to crevice corrosion. Therefore, many aspects of the
pitting model are expected to be directly applicable to the crevice corrosion model. It was
decided to defer development of a validated model of stress-corrosion cracking until
additional experimental information on the stress-corrosion behavior of candidate
container materials under repository relevant-conditions becomes available.

Factors driving the development and experimental validation of a pitting
corrosion model are centered around the need to understand the behavior of candidate
waste container materials that may undergo localized corrosion in repository-relevant
environments. The availability of such a model would minimize the risk of missing some
critical interaction of material and environment that would result in premature failure of
the container. The specific factors include:

1. A total lack of operational information on long-term storage of high-level
nuclear waste;

2. Uncertainty and variability in the environmental conditions, and possible
changes in these conditions;

3. The need to make technically defensible extrapolations to very long times
based on experimental data bases developed over very short times (with respect
to repository lifetimes); and

4. The need to make technically defensible extrapolations to very large
exposed surface areas based on experimental data bases developed from much
smaller areas.



In contrast to uniform corrosion, where mechanistic modeling has been
successful, a statistical approach to characterizing and modeling localized corrosion
appears to be necessary, even though the data requirements are large2. One advantage of
a statistical, or stochastic, model is that the evolution of the pit depth distribution, not just
the time required for initial penetration of the containers, can be computed. From this
information the area available for release of radionuclides through the container walls can
be estimated as a function of time3. This report describes a phenomenological approach
for computing the time evolution of these distributions that is largely stochastic in nature
but combines some elements of the deterministic aspects of pit growth.

The pit depth distribution, or pitting corrosion damage function, is illustrated
schematically in Fig. 1. It is simply a plot of the number (or frequency) of pits at a
particular depth vs depth. The damage function may be represented by smooth curves, as
in Fig. 1, or as a series of histograms, as shown later in this report. From a modeling
standpoint, the damage function is computed for various exposure times assuming that
the metal being pitted is infinitely thick. These curves then can be compared with the
actual wall thickness of the WP container, as shown in Fig. 1. The predicted time
required for the first pit to penetrate the container wall is that at which the computed
damage function first intersects the line corresponding to the wall thickness (#2 in Fig. 1).
At longer times, the number of pits penetrating the container wall is proportional to the
area under the damage function curve for pit depths greater than the wall thickness (the
shaded area under the #3 curve). The calculated depths of through-wall pits have no
physical significance, since a pit cannot have a depth greater than the wall thickness.
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Figure 1. Schematic illustration of the pitting corrosion damage function.
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Figure 2. The induction time distribution for 72 identical Type 304 stainless steel specimens
immersed in NaCl solution. Data of Shibata and Takeyama4.

1.2 The stochastic nature of pitting corrosion
Experimental studies have shown that the initiation of corrosion pits is a
stochastic process. Shibata and Takeyama* were the first to show that the critical
potential necessary to induce pitting and the “induction” time elapsed before pits become
observable are both statistically distributed quantities. For example, Fig. 2 presents their
data showing the distribution of induction times for 72 ostensibly identical Type 304
stainless steel specimens subjected to identical conditions. The data exhibit a wide
distribution of induction times, suggesting that pit initiation occurs stochastically.
There is also evidence that the growth of existing pits is a stochastic process.
This hypothesis is supported by the fact that a wide distribution of pit depths occurs in a
single specimen subjected to a nominally uniform environment. In a study of the pit
depth distribution evolution in mild steel, Marsh et al.5 identified four factors having the
potential to produce the wide distribution of pit depths observed on any given sample:
1) The pits will have different initiation times;
2) Many pits will cease to propagate following limited growth;
3) The morphology of the pits will vary, with some favoring more rapid mass and
charge transfer, and hence faster propagation rates; and



4) Some pits will initiate at metallurgical features which may favor more rapid
propagation, e.g. inclusions and grain boundaries.

Further support for the concept of stochastic pit growth is given by the data and
analysis of Aziz0 for the pitting corrosion of aluminum in tap water. Figure 3 shows the
pit depth distribution data of Aziz. When the aluminum is first exposed, a large number
of pits initiate and start propagating. After a short time, many pits progressively stifle
while only a portion of the population continues to grow, resulting in a backwards “J”
shape to the low depth portion of the distribution (This finding supports the concept of
permanent pit growth cessation introduced in Section 3.) For those pits still growing, the
random influence of the environment on propagation rates results in a bell-shaped
distribution, which moves as a body toward greater depths. (This finding directly
supports the concept of stochastic pit growth.) After much longer exposures, the mode,
i.e. peak, of the distribution becomes stationary, and only the deeper pits continue
growing. These pits grow at a steadily decreasing rate (which supports the use of a
nonlinear increase in pit depth with time, introduced in Section 2.3), and the majority of
the pits eventually stifle. These last two findings may result from the build-up of
corrosion products within and over pits.
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Figure 3. The distribution of pit depths as a function of exposure time for Alcan 25-O aluminum
immersed in tap water. Data of Aziz6.



2. The Initial Model

2.1 Stochastie pit initiation and growth

Over the past several years, a physically-based, phenomenological, stochastic
model of pit initiation and growth has been developed’-9. This model is based upon the
theory!0 that small fluctuations in the local conditions (e.g. electrolyte chemistry, fluid
flow rate, surface topography, near-surface microstructure) cause local breakdown of the
passive surface film, resulting in the “birth” of metastable pits or “embryos.” Many of
these embryos become unstable when the local conditions change, and repassivation, or
“death,” of the embryo results. Once a surviving embryo reaches a critical size or age
(the two are assumed to be closely related), it becomes a permanent or “stable” pit and
cannot die.

Monte Carlo computer codes have been developed to simulate the stochastic
processes of embryo birth and death and the establishment of a stable pit?. These codes
establish a unit area that is divided into individual “cells” to represent a metal surface in
contact with an aggressive environment. During each time step, a random number
between O and 1 is generated for every cell that does not already contain an embryo or
stable pit. If this random number is less than the user-prescribed birth probability, 4, a pit
embryo is placed in that cell; otherwise the cell remains empty. Physically, A
corresponds to the probability that, over the area of one cell in a unit time, the local
conditions will cause the passive film to break down, thereby initiating a microscopic pit
embryo.

For each cell containing an unstable pit embryo, another random number is then
generated. If this number is less than the input death probability, u, the embryo dies and
is removed from that cell. The death probability corresponds to the probability that a
specific pit embryo, or breakdown in the passive film, will repassivate during a unit time.
Pit embryo death has been linked physically, for example, with a reduction in the
hydrodynamic boundary layer thickness, which causes a loss of the local concentration
excursions needed to support the pit embryo!l.

The “age” of each surviving embryo, i.e. the number of time steps it has survived
since birth, is incremented at each step and compared with the critical age, 7.. If the age
of an embryo equals 7., a stable pit is formed in that cell, which is present for the
remainder of the simulation. Physically, the critical age can be related to the ratio of the
minimum stable pit depth to the velocity of pit embryo propagationll. The minimum
stable pit depth is related to the surface roughness and the thickness of the hydrodynamic
boundary layer, and the velocity of propagation depends on the electrochemical potential,



aggressive ion concentration, and the nature of the alloy. Finally, note that all three of the
pit initiation parameters (4, 4, 7c) can be related to experimentally measured quantities’.

An example of the model predictions for pit initiation is shown in Fig. 47. The
parameters used to make this calculation (given in the figure) were chosen arbitrarily, so
quantitative agreement with Fig. 2 is not expected. Qualitatively, however, the two
distributions are similar, suggesting that the model treats pit initiation in a realistic way.
Quantitative comparisons between the model predictions and pit initiation data have been
given elsewhere’ and support the same conclusion.
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Figure 4. Model predictions of the distribution in stable pit induction times (arbitrary units).
Three of the 75 simulations did not produce a stable pit within 75 time steps.

In the initial model, the effects of stochastic stable pit growth on the damage
function evolution were included using a simple approach: growth of a stable pit during a
particular time step occurs only if a randomly generated number between 0 and 1 is less
than the prescribed growth probability, ¥. Physically, y corresponds to the probability
that a pit will grow an increment in depth in one unit of time.

An example of the model predictions for stable pit growth under conditions of
constant environment is given as a series of histograms in Fig. 5. Each plot gives the
number of pits (per unit area) at each depth for a particular exposure time, where time is
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given in number of time steps, Ar. (As discussed later, quantitative calculations for
which exposure times and pit depths have physically meaningful units require
experimental data to fit the parameters in the model.) For short times (10 steps) the
distribution is narrow, with a large number of pits at low depths. As time increases, the
total number of pits increases (40 steps) and the peak in the distribution occurs at an
intermediate depth. The number of pits at very low depths is now less than at shorter
times. At long times (100, 125 steps), the number of pits stays fairly constant and‘ there
are few (if any) pits at low depths. The distribution also begins to broaden, and the
number of pits at the peak of the distribution is less than at shorter times. The depth at
which the peak occurs increases continuously with time. Many of these gross features are
consistent with the data published in the literature, e.g. Fig. 3. However, the linearly
increasing maximum pit depth with increasing exposure time and the nearly symmetric
shape of the distribution are inconsistent with the available data, as described in Section
2.3.

The utility of damage function evolution predictions like those given in Fig. 5 for
purposes of WP container performance assessment (PA) can be demonstrated as follows.
Consider the units of pit depth in Fig. 5 to be millimeters, and consider a WP container 32
mm thick. For times of 10 and 40 steps all of the pits have depths less than the thickness
of the container, so no release of radionuclides can occur as a result of pitting. Figure
5(c) shows that the time required for first penetration of the container is about 100 4t,
since at this time the first pit with a depth equal to 32 mm has developed. With further
exposure to a time of 125 A, Fig. 5(d) shows that approximately 25 pits have calculated
depths = 32 mm, and so will have penetrated a unit area of the container. While the
results in Fig. 5 are only qualitative, quantitative predictions could be made by
experimentally measuring pit depth distributions over a range of constant environmental
conditions, and using the results to provide quantitative values of the model parameters
for materials of interest.

2.2 Modeling the effects of environment

One major purpose of modeling pitting corrosion of WP containers is to
extrapolate short-time “accelerated” test data to the extremely long service times. Since
accelerated testing will require environmental conditions more aggressive than those
expected in the repository, these extrapolations will require quantitative predictions of the
effects of environment on pit initiation and growth rates. Simulating the effects of
environment on pitting also will be required to explore container performance for various
environmental scenarios, including the case in which the environment changes with time.



In the context of the stochastic pitting model, the goal is to model the
environmental sensitivity of the stochastic parameters: A, y1, 7, and 7. Rigorous
development of such relationships has not yet been possible, because it would require
considerable experimental work. Therefore, simple but physically reasonable
phenomenological expressions have been developed based on a variety of experimental
data from the literature. The purpose of this exercise was to provide the means for
qualitatively illustrating the potential power of the stochastic approach for predicting the
pitting response to various environments. Future efforts should be aimed at improving
the physical basis of these expressions, expanding their scope, and quantitatively
exploring their predictive capabilities.

Three important environmental parameters have been included in the illustrative
model: electrochemical potential, E, chloride ion concentration, [Cl-], and absolute
temperature, 7. Other variables, such as pH, oxygen concentration and the presence of
other ions in solution, would need to be included in a complete analysis. Based on a wide
variety of published experimental data, the following phenomenological expressions for
the environmental dependence of the stochastic parameters were determined?:

A=Ap (E-By) - exp(C1[Cl]) - exp(-Qu. /RT) )
Jt= Az - exp(-Cx[CI"]) - exp(-Qu /RT) @

%= A3 - exp(-ByE) - exp(-C3[CI"]) - exp(+Qe /RT ) 3)
¥ = A4 (E - B4)Bs - ([CI])C+ - exp(+Qy/RT) 4

where the A's, B's and C's are constants, the Q's are activation energies and R is the gas
constant.

Using Eqs. (1)«(4), predictions of the effects of E, [Cl-], and T on a variety of
pitting phenomena have been made7:8. In general, the predictions are qualitatively
consistent with published experimental data. Most importantly, it has been
demonstrated” that this expanded stochastic model can predict the pit depth distribution
evolution for continuously changing environmental conditions of the kind actually
expected in the repository. Consider the simple, but plausible, environmental scenario
shown in Fig. 67. Figure 7 shows the behavior of the stochastic variables computed by
Egs. (1)=(4) for this environmental history. Note how the simple environmental changes
can cause complex changes in the stochastic variables, and thus the pitting response.
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This prediction suggests the need for sophisticated models, not just simple empirical
laws, to predict the pitting response under realistic conditions. From the time evolution
of the stochastic variables, the model can then predict the evolution of the damage
function, Fig. 8. Note how the complex environmental history has produced a pit depth
distribution after an exposure of 115 steps that has a complex shape compared to the
simple shape given in Fig. 5. As described earlier, distributions like those shown in Fig.
8 can be compared with the thickness of the WP container to assess its integrity. Thus,
even for complex environmental histories, the model can predict when the container is
first breached by a single pit and then how many pits per unit area will breach the
container as a function of time for longer exposures. This information then could be used
in a more complete PA model to predict radionuclide release rates.

2.3 Deficiencies of the initial model

The pit depth distributions predicted by the initial model for constant
environmental conditions, e.g. Fig. 5, properly exhibit an intermediate peak but
incorrectly simulate a nearly symmetrical distribution. Data for a wide range of materials
and testing conditions reported in the literature5-6-12-16 show that such distributions
actually have a positive skew. In other words, the peak in the distribution occurs toward
small pit depths and a relatively long “tail” is exhibited at large depths, e.g. Fig. 3. While
this feature of the data may seem to be a minor detail, efforts to more accurately model
the tail of the distribution are justified, because the deepest pits are the most significant in
terms of WP container degradation.

Related to the lack of a positive skew in the predicted pit depth distributions is the
assumption that all stable pits continue to grow, albeit in a stochastic manner, throughout
the entire simulation. As discussed in Section 1.2, a variety of data suggest that many
small pits cease to grow early during exposure, probably because of a lack of available
reactants, such as oxygen and electrons. Further, deep pits may cease to grow later in the
exposure because of capping or clogging with corrosion products. The initial model
could not simulate such behavior.

Despite the fact that pits grow to have a wide distribution of depths, indicating a
probabilistic aspect to pit growth, many theories treat pit growth deterministically,
typically as a problem in diffusionl?. (Of course, the applicability of such theories to
millimeter-scale pits is debatable.) These diffusion theories and a variety of experimental
observations6:17 suggest that the pit growth rate decreases as the exposure time and pit
depths increase. Equation (5) is often used to phenomenologically describe these
deterministic aspects of pit growth (for constant environmental conditions):

12
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d=AtP ,

where d is pit depth, ¢ is exposure time, and A and p are constants. Typically, p < 1, with
values of 0.3 and 0.5 being quite common. However, the model presented in Sections 2.1
and 2.2 predicts that the median and maximum pit depth increase linearly with exposure
time for constant environmental conditions. This prediction stems from the assumption
that the growth probability, 7, is independent of exposure time or pit depth, and the
assumption that pit depth is directly proportional to the computed “age” of the pit9.

Finally, while the physical basis for modeling stochastic pit initiation is solidly
based on the theories and experimental results stemming from several careful
investigations, the physical underpinnings of the stochastic pit growth model are more
tenuous’-9. Therefore, it was desirable to improve the link between the pit growth model
and accepted physical theories so that model extrapolations of laboratory data can be
made with more confidence.

3. The Improved Model

3.1 Changes to the model

As discussed earlier, experimental evidence suggests that many pits cease to
propagate following a limited amount of growth. To accommodate this observation, a
new stochastic variable was introduced into the model: the probability that during any
given time step a stable pit will permanently cease to grow, 7. Again, a random number
between O and 1 is generated at each time step for every growing pit, and if this number is
less than or equal to 1) the growth of that pit is permanently halted.

To account for the nonlinear pit depth increase as a function of exposure time
discussed in Section 2.3, the phenomenological relationship given in equation (5) was
incorporated into the model using two different approaches. The first, or “preliminary,”
approach to including this deterministic aspect of pit growth involved a straightforward
extension of the model described in Section 2.1. The “revised” approach involved a new
interpretation of stochastic pit growth and included other changes to make the model
more physically realistic.

In the preliminary approach, Eq. (5) was incorporated directly into the model with
one slight modification. Instead of representing the exposure time, ¢ is the pit “age,”
which is less than the actual exposure time for two reasons. First, it takes some
“induction” time, 7, to initiate a pit following exposure (Section 2.1). Second, pits are
assumed to grow, or “age,” stochastically with some probability ¥, and may permanently

14
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cease to “age” with some probability 7; i.e. pits do not age during all time steps. Thus, at
the end of a simulation the pits have a distribution of “ages,” from which the
corresponding depths are computed using Eq. (5). Of course, Eq. (5) is not ideal for
modeling purposes because it precludes easy treatment of variable environmental
histories. However, it was worthwhile to use this equation in combination with the
concepts of stochastic pit growth and permanent growth cessation as a means to begin
exploring models incorporating both the deterministic and probabilistic aspects of pit
growth.

In the revised model, the use of exposure time as an explicit variable to describe a
decreasing pit growth rate, Eq. (5), was eliminated. In addition to precluding the easy
treatment of variable-environment exposures, the explicit use of exposure time is
physically unrealistic since it is the increasing diffusion distance (i.e. pit depth), not
exposure time per se, that causes the decrease in pit growth rate. The revised model also
employs a new approach for simulating the stochastic aspects of pit growth. This
approach was motivated by the interpretation of experimental pit depth distribution data
by Marsh et al.5. These investigators suggested that the stochastic variation in pit growth
rates stems from the variations in pit morphology and local metallurgical conditions,
which cause variations in the charge and mass transfer rates from pit to pit. Thus, pits
grow continuously but at a variety of rates. The permanent pit growth cessation
probability, 7, also was included in the revised model.

To incorporate these two new concepts of stochastic pit growth into the model,
Eq. (5) can be modified as follows:

kKd=kA @ -*T¥;p<1, ©6)

where in this case ¢ is the actual exposure time and the superscript k is used to distinguish
among all the individual pits in the simulation. Note that each pit has its own induction
time, ¥7, and its own value of A. The stochastic variation in pit growth rates is simulated
by randomly assigning a specific value of ¥A for each pit from a prescribed, possibly
nonuniform, distribution. In the analysis performed here, it is assumed that the values of
kA are distributed according to a normal, or Gaussian, distribution. Taking the time
derivative of Eq. (6) and substituting for the quantity (¢ — kT ) by inverting Eq. (6) gives
an equation for the rate of pit growth that depends only on the depth of the pit, and not on
the exposure time. Writing this equation in incremental form with At as the time step size
gives the following:

15
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where
akd =kd; —kd; ; | (®)

and the subscript i denotes the current time step. Thus, at any time step i in the
simulation, the increment in pit growth can be written as a function only of the time step
size, the pit depth at the previous time step, and the constants ¥A and p:

*d;=td;  + A [P(kA)%’ (kdi—l )p—yp]- ©)

Calculations have shown that the pit depth distributions predicted using Eq. (9) are
independent of time step size if the proper modifications are made to the input
probabilities (e.g., 4, 1, 1) to account for a change in At 7.

To implement Eq. (9), a method was established for producing random values of
kA from.a population that is normally distributed. An algorithm was identified!8:19 that
produces random values from the standard normal distribution using a uniform random
number generator, such as the one already implemented in the initial Monte Carlo code.
Thus, for any value taken randomly from the standard normal distribution, Z, the value of
kA with the corresponding cumulative probability is simply:

kA=0Z+u, (10

where o and p are the standard deviation and mean of the desired kA distribution, which
are input prior to the simulation.

3.2 Model predictions

Figure 9 illustrates the capability of the new model in its preliminary form to
simulate the complex time evolution of the pit depth distribution. For this simulation, the
probability of initiating a new pit embryo was decreased exponentially with exposure
time? such that no new pits were initiated for exposures greater than approximately 50
time steps. The parameters affecting the growth of these pits, ¥; 77, A and p, were chosen
arbitrarily and are given in the figure. Following 100 time steps, Fig. 9(a), the
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distribution exhibits a peak at the lowest depths, followed by a decrease in the number of
pits with increasing depth, and then a second local maximum. This gives the backwards
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this portion of the distribution was attributed to the stifiing of shailiow pits. In the model,
this same feature is caused by the permanent cessation of growth for many small pits
s, the heights of the two neaqu

~a 'w , A

thrnnoh the parameter 7. As the exnogure time

ter 7] posure time incre
decrease somewhat as the distribution broadens, Fig. 9(b). The broad distribution of pit

depths, particularly beyond the backwards “JI” feature, was attributed by Aziz6 largely to

the randomly varying propagation rates for individunal pits. This same characteristic is
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With further increases in exposure time, the two peaks remaify stationary and only the
deepest pits continue to grow, creating a long “tail” to the distribution, Fig. 9(c). This
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that only a few grow to large depths. Consistent with this finding, the growth cessation
probability, 1, causes most pits to stop growing after 500 time steps. Finally, note in Fig.
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increases. A similar phenomenon is evident in Fig. 9. Following 100 time steps dmgyx =
3.5, while after a five-fold increase in exposure time dp,,y has less than doubled to 5.5,
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the rate of increase for dpm,x slows due to the use of 1 = 0.01. Consider that for an
exposure of 500 steps only four of the initial 590 pits are still growing. This implies that
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halted, requiring shallower pits to grow and become the deepest active pits at ionger
exposures. In summary, the complex pit depth distribution evolution exhibited in Fig. 3

is gualitativelv predicted by the new preliminary model through the consideration of both
quahiiatively predicted by the new prelimunary model through the consideration of both

the stochastic and deterministic aspects of pit growth.
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Figure g. Distribution in pit depths computed by the preliminary mode! for the growth parameters
given in the figure and exposures of: (a) 100 time steps, (b} 200 time steps, and (¢) 500 time
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Of course, the evolution of the pit depth distribution is sensitive to the input

rameters affecting pit growth, Calculations have shown that the shapes of the

na
}
distributions during various stages of evolution are most sensitive to the relative values of
the pit growth and cessation probabilities, yand 1. Experimental measurements of the pit

depth distribution evolution for materials and environments of interest would be required
_____ LI T am wrmlammm el onmmnwesabasn
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Figure 10 presents the results of calculatiens similar to those shown in Fig. 9 but
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erformed using the revised model. A permanent pit growth cessation probability of 17 =
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short exposure times, e.g. 50 time steps, Fig. 10(a) shows that the distribution of pit
depths is nearly symmetric. In the revised model, this distribution in pit depths is largely
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time step. Note that the backward “J” shape of the distribution at small pit depths present
in the data of Aziz® and in the calculations presented in Fig. 9 is absent in Fig. 10.
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pits are small and don’t grow. For intermediate exposures, Fig. 10(b) shows that much of
the distribution moves as a body toward larger pit depths so that the distribution remains

roughly “bell” shaped However, it becomes somewhat skewed toward small pit depths
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with an increasingly long tail at iarge depths. Similar features are observed in the data
given in Fig. 3 for pits beyond the backward “J.” Finally, for relatively long exposures,

Fig. 10(c) shows that the distribution has become nearly stationary, with only the deepest
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pits continuing to grow, making the tail at large depths more extensive. Again, this
feature of the predictions is qualitatively consistent with that computed by the

nreliminary model and observed exnerimentallv. Fie, 3.
tllvuuma.mj ARANT 'l AR W T RRA T W e '-‘r J ] o

FLY FimY S Y
\a) 1) (\)
500 __ 2:-0 250 _ :
Aok R R R RN RR AR R RN R RN RN RN R RRRRRRRRRRERE! U O O O Ty _u.uun:uun.:uunnn.nwm.numnnuui
a L 50 Steps 208 200 Steps j ey 500 Steps ]
400[ 3 o o 3
2 4o0F g 1 2% 1) S [ :
o 1 ] i z .
s 300 A A d
| p=05 ] J
D Lan ]
L 200 .
£ - 1
= 100} ] 1
a ] R e
"0 i R L
e Mt
10M0eE FiR bepwn

Figure 10 0. Distribution in pit depths computed by the revised modei for the growth parameters
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The new model, both in its preliminary and revised forms, is capable of
simulating the nonlinear dependence of the maximum pit depth on exposure time (for
constant environmental conditions). Figure 11 shows an example for the revised
formulation using input values of p = 0.5 and 7 = 0.001. The plot with linear axes, Fig.
11(a), emphasizes the striking decrease in the pit growth rate with increasing exposure
time and pit depth. The logarithmic plot in Fig. 11(b) shows that, as expected, the
predicted time exponent equals the input value of p, so long as significant permanent pit
growth cessation has not occurred. This latter phenomenon is what causes the computed
maximum pit depth at S000 steps to be somewhat below the line for p = 0.5.

In summary, the new model is capable of qualitatively reproducing the shapes of
the pit depth distributions typically observed experimentally, including the presence of a
long tail at large depths. The new model also predicts a nonlinear increase in maximum
pit depth with increasing exposure time, consistent with a wide variety of data. These
improvements stem from a combination of changes related to the stochastic and
deterministic aspects of pit growth. Minor differences exist between the preliminary and
revised versions of the new model in the details of their predictions regarding pitting
damage (also see Section 4). However, neither method is clearly superior to the other in
the accuracy of its predictions, though the revised model has a stronger physical basis.
Experimental data relevant to modeling pitting corrosion of WP containers are required to
make a final judgment regarding the suitability of the two methods.
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Figure 11. Revised model predictions of the time dependence of the maximum pit depth are
plotted on (a) linear and (b) double-logarithmic axes. Pit depths are in amitrary units.
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4. Dependence of Maximum Pit Depth on Surface Area Exposed

The method of “extreme-value statistics” (EVS) is commonly employed in the
analysis of experimental pit depth data6:12-14, EVS is particularly valuable for predicting
the commonly observed logarithmic increase in maximum pit depth with increasing
specimen or service component surface area5:6:14.15, In the context of WP container
design and performance assessment, EVS analysis of laboratory data collected on a
limited number of small specimens might provide the means to predict the probability of
pits reaching significant depths (e.g. equal to the container thickness) over the surface of
an entire container, or many containers. Such a prediction should be accurate so long as
the extrapolated maximum pit depth exceeds the deepest measured pit by no more than
about a factor of threeS. Fortunately, this provides an extrapolation in exposed surface
area of up to three orders of magnitude.

Given the utility and wide acceptance of EVS to analyze pitting damage, it is
useful to determine if the stochastic pitting model is consistent with this method.
Therefore, modifications to the Monte Carlo code were made which follow from the
actual experimental procedure described by Aziz0. First, an individual test coupon is
simulated by a single model “run” using a unique “seed” value to initiate the random
number generator’. Using a single set of input parameters, an N-run simulation is
performed in which each run begins with a different random number seed. This
procedure corresponds to the exposure of multiple, identical test coupons to the same
corrosive environment, as described by Aziz6. Analogous to the experiments, the surface
area simulated is proportional to the number of runs in the simulation, since one run
represents a unit surface area. Following each run within a particular N-run simulation,
the maximum computed pit depth is stored. Once all N runs have been completed, these
values are sorted in ascending order, providing “data” analogous to those collected
experimentally®:

d << .. <d "< L <d (11)

The cumulative probability that the deepest pit is less than or equal to d,,™* is then

computed from these data as:

@, =m/(N+1). (12)
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These probabilities from the Monte Carlo simulation are then analyzed using the most
common expression for the expected extreme-value distribution®:

D, =exp [-exp (-3,,) ], (13)
where y,, is the “reduced variate.” The reduced variate is defined as:
Ym=0a@,"-u), (14)

where u is the “mode” (highest point of the extreme-value distribution) and ¢ is the

“scale” parameter measuring the width of this distribution. The values of u and ¢ are fit
to the Monte Carlo “data,” Eq. (11), as follows. First, Eq. (13) is solved for y,,, giving:

Y =-1n{-1n(D,) } . (15)
where @, is computed from the Monte Carlo results using Eq. (12). For each value of
®,,, a corresponding y,, is computed from Eq. (15). Then, the data pairs (d,™*, y,,) are
plotted on linear axes and fit to Eq. (14) using linear least squares analysis to determine o
and u. Extrapolation of this fitted line provides predictions of the probability and
exposure time required for the occurrence of a pit of any given depth®,

(@) (b)
6.5 rrrry T e T —
£ : ] = !
o ¢ 500 Steps o] o b 500 Steps
g | | & o5
= °F E = :
o. E > : a. 30:
I 1 5
E 5.5_— -] E
] L E ‘= 25+
ﬁ é [ ]
= : = [
5 Caoad a2 A we | 20 PR 1ol ataaaasl L i1
10 100 1 100
Surface Area Surface Area

Figure 12. Predictions of the increase in maximum pit depth with increasing exposed surface
area from (a) the preliminary model, and (b) the revised model. Pit depth and surface area are in
arbitrary units.
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In general, the stochastic model is consistent with the EVS theory. For example,
it has been shown? that the d,™* vs y,, plots predicted by the stochastic model are
qualitatively consistent with those measured experimentally in several material-
environment systems%12-14, Most importantly, consistent with previous EVS analyses
and data, the stochastic model predicts that the maximum pit depth increases
logarithmically with increasing exposed surface area, Fig. 12. Thus, by performing
simulations with identical input parameters and varying the numbers of runs, the effect of
exposed container surface area on the maximum pit depth can be predicted by the
stochastic model.

5. Experimental Validation

Modeling cannot progress without input from experimental data. Experimental
data are required to fit the model parameters so that quantitative predictions can be made,
to verify the accuracy of the model, to validate the basic model assumptions, and if
necessary to re-formulate the model. Ideally, the process of modeling and testing is
iterative, with these efforts taking place in parallel so that results from one can drive
improvements in the other. Plans for experimental support of the stochastic modeling
effort have been made20-22 but funding constraints have limited the execution of these
plans.

To date, the experimental validation of the models has been limited to a few
preliminary measurements of the pit depth distribution evolution in Incoloy 825. Briefly,
these experiments involve exposing flat specimens to an aggressive aqueous
environment. A constant electrochemical potential is applied to the specimens to induce
relatively rapid pitting under controlled conditions. Each specimen is removed from the
aggressive environment following a prescribed exposure time, and is examined to
measure the distribution of pit depths. The evolution of the distribution with increasing
exposure time can then be compared with model predictions to test the assumptions and
equations used in the model.

Specifically, potentiostatic polarization experiments were performed on 1 cm?
samples of Incoloy 825 immersed at 90 °C in 5% NaCl aqueous solution containing
sulfuric acid (pH = 2.6). Using optical microscopy, the depth of each pit was measured
by calibrated focusing, and the pit diamneters were measured with a filar eyepiece. (Note
that pits with depths less than about 25 pm, of which there were many, were not
measured). Examples of the measured pit depth and diameter distributions are given in
Fig. 13. These distributions are qualitatively similar to the predicted distributions shown
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g. 10 for relatively short exposures. In particular, there is a peak in the distributions
at an intermediate depth or diameter. However, the long tail in the distribution at large
depths (or diameters) that is predicted by the model for long exposures is not observed in
the short-exposure distributions given in Fig. 13. Longer time exposures are required to
test this prediction of the model. Table 1 gives a summary of the measured pit depth data
gathered to date. Although these data are insufficient to draw many firm conclusions, it
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of pits per unit area. The effects of exposure time and electrochemical potential on pit
depths are not yet clear.
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Figure 13, Experimentai distributions of (a) pit ueptn (n) cnameter and (c) aspect ratio for Incoloy
825 immersed for 240 minutes at 80 "C in pH 2.57, 5% NaCl solution and polarized at 402 mV
SHE. Unpublished data of Henshall and Roy [23].
Table 1. Pit depth distribution data for 1 cm2 samples of Incoloy 825 immersed in
acidified brine (5% NaCl) at 90 °C. Data of Henshall and Roy [23].
Eapp Exposure Number Maximum Median
(mV SHE) | Time (min.) pH of Pits Depth (nm) | Depth (mm)
[ ——— e —————— S eeeea
372 430 2.67 1 0.361 0.361
382 120 2.66 6 0.653 0.449
382 232 2.64 34 0.899 0.621
392 218 2.51 21 0.822 0.681
402 240 2.57 68 0.505 0.363

Figure 13(c) shows the distribution in pit aspect ratios, defined as the pit depth
divided by the diameter. If the aspect ratio is less than one (broad, shallow pits),
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automated pit depth measurement techniques may be viable for future work, or the pit
diameter could be used as a conservative measure of damage. The data given in Fig.
13(c) reveal that all pits have an aspect ratio less than one for this experiment, though
testing under somewhat different conditions revealed aspect ratios of up to 2. Again,
more data are required to make a firm conclusion regarding pit aspect ratios in Alloy 825.

6. Summary and Conclusions

A phenomenological, stochastic model of pit initiation and growth has been
developed in support of waste package container design and performance assessment.
This model can simulate the time evolution of the distribution in pit depths on a metal
surface exposed to an aggressive environment. A review of the initial model revealed it
to be capable of realistically simulating stochastic pit initiation. This model also includes
simple phenomenological relationships describing the environmental dependence of the
stochastic parameters. Therefore, it can simulate pit initiation and growth under variable-
environment histories, such as those anticipated in the repository.

Recent improvements to this model have focused on pit growth and the time
evolution of the pit depth distribution. These improvements include the capability to
model permanent pit growth cessation, methods to deterministically predict a nonlinear
increase in maximum pit depth with increasing exposure time (for constant
environmental conditions), and a more physically realistic treatment of stochastic pit
growth. These improvements have resulted in predictions that are qualitatively more
consistent with a variety of experimental data in the literature, for example the
development of pit depth distributions with a positive skew and a long tail at large pit
depths. Further, this model has been shown to be consistent with extreme-value
statistical methods for predicting the logarithmic increase of maximum pit depth with
increasing exposed surface area.

A critical need has been identified for generating experimental data for candidate
container materials exposed to repository-relevant environments. These data are required
to quantitatively assess and further develop the model. Preliminary pit depth distribution
data for Incoloy 825 have been presented. These data are qualitatively consistent with
stochastic model predictions of a peak in the pit depth distribution at intermediate depths,
and show that this alloy is susceptible to pitting under aggressive conditions.
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